Metal Nanoparticles and Self-Assembled Monolayer

Francesco Stellacci
Department of Materials Science and Engineering
frstella@mit.edu
Outline

- History
- Metal Nanoparticles Synthesis
- Electrical Double Layer
  - Solubility
- Self-Assembly and Self-Assembled Monolayer
- Ligand Coated Metal Nanoparticles
  - Solubility
  - Mixed Ligands
Nanoscale Materials

1nm < d < 100nm

Increasing size

molecule  nanoparticle  bulk material

Milan - Duomo

Single Electron Transistor
Andres et al., Science, 1323, 1996

Florence - S. Croce
What are they?

0 dimensional nanomaterials: unique properties due to quantum confinement and very high surface/volume ratio

Nanoparticles  Nanorods

1 dimensional nanomaterials: extremely efficient classical properties

Nanowires  Nanotubes
More Specifically

0 dimensional nanomaterials:
unique properties due to
quantum confinement
and very high surface/volume ratio

Nanoparticles  Nanorods
1 dimensional nanomaterials: extremely efficient classical properties

Nanowires  Nanotubes
Properties of Metal Nanoparticles

Optical Properties

Electronic Properties

Nanoscale Materials Have Different Properties when compared to their bulk counterparts!
A brief historical Background

- the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed.

- it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China.

- the Lycurgus Cup that was manufactured in the 5th to 4th century B.C. It is ruby red in transmitted light and green in reflected light, due to the presence of gold colloids.
The reputation of soluble gold until the Middle Ages was to disclose fabulous curative powers for various diseases, such as heart and venereal problems, dysentery, epilepsy, and tumors, and for diagnosis of syphilis.

the first book on colloidal gold, published by the philosopher and medical doctor Francisci Antonii in 1618. This book includes considerable information on the formation of colloidal gold sols and their medical uses, including successful practical cases.

In 1676, the German chemist Johann Kunckels published another book, whose chapter 7 concerned “drinkable gold that contains metallic gold in a neutral, slightly pink solution that exert curative properties for several diseases”. He concluded that “gold must be present in such a degree of communion that it is not visible to the human eye”.
A colorant in glasses, “Purple of Cassius”, is a colloid resulting from the heterocoagulation of gold particles and tin dioxide, and it was popular in the 17th century.

A complete treatise on colloidal gold was published in 1718 by Hans Heinrich Helcher. In this treatise, this philosopher and doctor stated that the use of boiled starch in its drinkable gold preparation noticeably enhanced its stability.

These ideas were common in the 18th century, as indicated in a French dictionary, dated 1769, under the heading “or potable”, where it was said that “drinkable gold contained gold in its elementary form but under extreme sub-division suspended in a liquid”.

In 1794, Mrs. Fuhlame reported in a book that she had dyed silk with colloidal gold.

In 1818, Jeremias Benjamin Richters suggested an explanation for the differences in color shown by various preparation of drinkable gold: pink or purple solutions contain gold in the finest degree of subdivision, whereas yellow solutions are found when the fine particles have aggregated.
• In 1857, Faraday reported the formation of deep red solutions of colloidal gold by reduction of an aqueous solution of chloroaurate (AuCl$_4^-$) using phosphorus in CS$_2$ (a two-phase system) in a well known work.

• He investigated the optical properties of thin films prepared from dried colloidal solutions and observed reversible color changes of the films upon mechanical compression (from bluish-purple to green upon pressurizing).

• The term “colloid” (from the French, colle) was coined shortly thereafter by Graham.

Synthesis of Metal Nanoparticles

The citrate method

- It is easy
- It requires only water
- It requires skills
- Has reproducibility issues
What is on the surface?
The electrical double layer

**FIGURE 2.24** Electrostatic stabilization of metal colloids. Van der Waals attraction and electrostatic repulsion compete with each other.\(^{27}\)
FIGURE 5.4 Plot of the interaction energy between two spherical gold particles in aqueous solution as a function of the particle separation, for several particle radii. Hamaker constant = $25 \times 10^{-20}$ J, $I = 1$ mM, $\nu_0 = 0.10$ V, $a = 1.0$ nm, 3.0 nm, and 10.0 nm, Debye length = 10 nm. Note that the secondary minimum is negligible for nanoparticles, but becomes important above 10 nm.
**FIGURE 5.5** Plot of the interaction energy between two spherical gold particles in aqueous solution as a function of the particle separation for several surface potentials. Hamaker constant $= 25 \times 10^{-20} \text{ J}$, $I = 10 \text{ mM}$, $a = 10 \text{ nm}$, Debye length $= 3 \text{ nm}$. Note that a zeta potential, $|\zeta| > 50 \text{ mV}$, is necessary for colloid stability because of the high Hamaker constant.
What are the limitations?
Box 1

**Surface plasmon basics**

SPs at the interface between a metal and a dielectric material have a combined electromagnetic wave and surface charge character as shown in **a**. They are transverse magnetic in character ($\mathbf{H}$ is in the $y$ direction), and the generation of surface charge requires an electric field normal to the surface. This combined character also leads to the field component perpendicular to the surface being enhanced near the surface and decaying exponentially with distance away from it (**b**). The field in this perpendicular direction is said to be evanescent, reflecting the bound, non-radiative nature of SPs, and prevents power from propagating away from the surface. In the dielectric medium above the metal, typically air or glass, the decay length of the field, $\delta_z$, is of the order of half the wavelength of light involved, whereas the decay length into the metal, $\delta_m$, is determined by the skin depth. **c**. The dispersion curve for a SP mode shows the momentum mismatch problem that must be overcome in order to couple light and SP modes together, with the SP mode always lying beyond the light line, that is, it has greater momentum ($\hbar k_{SP}$) than a free space photon ($\hbar k_0$) of the same frequency $\omega$. 

---

**Plasmons**
Optical Properties

Mie Theory (1908)

\[
\sigma_{abs}(\omega) = \frac{9 \omega V_0 \varepsilon_m^{\frac{3}{2}}}{c} \frac{\varepsilon_2}{(\varepsilon_1 + 2\varepsilon_m)^2 + \varepsilon_2^2}
\]

\[
\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)
\]

Drude free electron model

\[
\varepsilon(\omega) = 1 - \frac{\omega_p^2}{\omega^2 - i\gamma\omega}
\]

Empirically

\[
\gamma(r) = \gamma_0 + \frac{a}{r}
\]

Surface Plasmon Resonance is invariant with respect to the size on the nanoparticle.

The FWHM scales with the radius of the particles.

- Assumes spherical particle
- Particle diameter \(<< \lambda/10\)

Plasmon on nanoparticles
Funny shapes
Figure 1. Comparison of “normal” (top) and surface-enhanced (bottom) Raman scattering. In Figure 1a, the conversion of laser light $I_L$ into Stokes scattered light $I_{NRS}$ is proportional to the Raman cross section $\sigma^R_{\text{free}}$, the excitation laser intensity $I_L$, and the number of target molecules $N$ in the probed volume. Figure 1b displays a schematic of a SERS experiment. $\sigma^R_{\text{ads}}$ describes the increased Raman cross section of the adsorbed molecule (“chemical” enhancement); $A(\nu_L)$ and $A(\nu_S)$ are the field enhancement factors at the laser and Stokes frequency, respectively; $N$ is the number of molecules involved in the SERS process.
Local Field Enhancement

Figure 3. Calculated near-field false-color images computed 100 nm above the topographical silver cluster image shown in the upper right-hand corner. Maximum intensity is shown as yellow and the minimum is black; the intensity range covers approximately a factor 4. (Reprinted with permission from ref 62. Copyright 1999 American Institute of Physics.)
Concentration Dependence

Figure 4. SERRS spectrum from $8 \times 10^{-11}$ M rhodamine 6G in silver colloidal solution (top), with addition of 5 M methanol (middle). Spectra were measured using 514.5 nm resonant excitation; laser intensity was ca. $10^8$ W/cm$^2$. No fluorescence was obtained at such low concentration because all dye molecules can find a place on the colloidal silver particles where the fluorescence is quenched. The bottom curve depicts the exact subtraction of the top curve from the middle one and shows only the methanol lines. The methanol Raman signal is not enhanced on colloidal silver and shows a Raman cross section on the order of $10^{-33}$ cm$^2$/molecule.\textsuperscript{133}
Figure 8. (a) Multicolor Raman image of Ag nanoparticles excited with a mercury lamp at 490 and 570 nm. The probe molecule is bis(4-hydroxy)ethylene (HPE). The green, red, and yellow signals correspond to 70 nm particles (excited at 490 nm), 140 nm particles (excited at 570 nm), and intermediate-sized particles or nanoaggregates (excited at both 490 and 570 nm), respectively. (b) Multicolor Rayleigh image of Ag nanoparticles excited with a tungsten lamp. For rough orientation, the blue particles correspond to spherical Ag particles with a size of approximately 50 nm or to smaller nonspherical particles and red images come from particles with very high axial ratios, such as rods. (Reprinted with permission from refs 85 and 87. Copyright 1998 American Chemical Society.)
Figure 14. SERS spectrum of a single Hemoglobin molecule on an optically “hot” silver nanoparticle (see inset). A 100× microscope objective was used to illuminate this pair and also to collect the scattered light. The laser wavelength was 514.5 nm, laser power was ~20 μW, laser focus radius was ~1 μm, and integration time was 200 s. (Reprinted with permission from ref 86.)
Metal Nanoparticles Fractal Clusters

- Metal nanoparticle fractal clusters
  → Collective surface plasmon modes
    • strongly localized
    • resonate at VIS/NIR frequencies

Theoretical simulation by Shalaev et al., PRB 1997

- Enhancement of optical processes:
  Raman scattering, Lasing, DFWM, TPA
Sample Preparation

\[
\text{AgNO}_3 + \text{H}_2\text{O} \xrightarrow{\Delta} \text{Ag}^0
\]

\[
\text{Ag}^0 + \text{HOO} \xrightarrow{\text{Sedimentation}} \text{Metal clusters}
\]

\[
\text{O.D.} \quad \text{Wavelength (nm)}
\]

- **Sedimentation**
- **Fractal clusters**
- **Glass slide**

**Graph:**
- Nanoparticles
- Fractal clusters

**Diagram:**
- AgNO\(_3\) and H\(_2\)O reacting to form Ag\(^0\)
- Sedimentation of Ag\(^0\) and HOO forming metal clusters on a glass slide.
TPA Enhancement

**Graph 1:**
- **Absorption vs Power (W):**
  - Red line: TM70 only
  - Blue line: Ag only
  - Green line: Ag + TM70

**Graph 2:**
- **ln(Power/W):**
  - Red line: TM70 only
  - Blue line: Ag only
  - Green line: Ag + TM70
  - Black line: Ag + TM70 (closer to edge)

**Diagram:**
- **Ti:Sapphire laser** (~800 nm, ~100 fs)
- **Mono-chromator**
- **LWP filters**
- **Glass substrate**
- **TPA polymer**
- **Ag**
- **Sample**
- **Amplifier**
- **Counter**
Spatial Inhomogeneity

- TPF vs. position: very inhomogeneous as expected
  Average enhancement factor ~ 235 ==> Peak enhancement factor > 2000 (lower limit)
Frequency Dependence

- Excitation wavelength dependence:

  \[ \lambda_{\text{exc}} = 720 \text{ nm} \]
  \[ 820 \text{ nm} \]
  \[ 890 \text{ nm} \]

False Color Overlay
Sub-monolayers on MNFC

Thickness dependence

- Spatially averaged TPF enhancement factor ~ 20000 (referenced against one-photon fluorescence)
- Peak TPF enhancement factor > 160000
Morphology Effect

Enhancement factor: 1

Enhancement factor: $10^4$

Enhancement factor: 5
Metal Nanoparticles Synthesis

Metal Salt (AuHCl₄) + Reducing Agent (NaBH₄)

Direct mixed ligands reaction**

Ligand exchange reaction*

Synthesis Mechanism
Synthesis Procedure
Figure 5. Ligand substitution reactions (CH$_2$Cl$_2$, 2 d, room temperature) for the syntheses of the AuNPs containing mixed dodecanethiol and (amidoferroceny) alkanethiol-type ligands with variation of the chain length (C$_{11}$ vs C$_6$) and ring structure of the ferrocenyl motif (Cp, Cp*, C$_5$H$_4$COMe). Reprinted with permission from ref 140 (Astruc’s group). Copyright 2002 American Chemical Society.
Figure 16. Cartoon diagram of core metal galvanic exchange reactions. MPC, monolayer-protected cluster; MPAC, monolayer-protected alloy cluster; SC12, Si(CH2)11-CH3. Reprinted with permission from ref 166a (Murray’s group). Copyright 2002 American Chemical Society.
Solid State Photo-Patterning

HOMO

LUMO

Dye

Ag⁺

Photography

Nanoparticle patterning

In solution: Huang et al., Langmuir, 12 (4), 909, 1996
Nanoparticle Generation

Dye and AgBF$_4$ in a 1:1 molar ratio irradiated @ 488nm

In Acetonitrile

In PVK
Applications for Nanoparticles Patterns

3D Optical Memories with fluorescence-based and refractive index-based readout

Holographic Data Storage
All the images were saved on the same spot spaced of $7^0$.
General Concept

1. Photo-reduction
2. Growth
3. Coalescence
Silver Nanoparticles Synthesis

\[ Ag^+ + RSH \xrightarrow{} (RSAg)_n \]

\[ (RSAg)_n + Ag^+ \xrightarrow{NaBH_4} (RS)_n Ag_{m'} \quad m' > n \]

\[ (RS)_n Ag_{m'+} + Ag^+ \xrightarrow{Dye, h_\nu} (RS)_n Ag_{m''} \quad m'' > m' \]

\[ \text{absorbance} \]

\[ \text{wavelength (nm)} \]

\[ \text{fwhm (nm)} \]

\[ \text{time (min)} \]

TPA induced Microfabrication

2hv

D-π-D TPA dye

100 fs pulses 700 - 800 nm

1.4 NA, 0.35 μm spot


Insoluble cross-linked polymer
Silver Patterns

Wavelength: 488 nm
Average Power: 3 mW
Writing Speed: 25 μm/s

Transmission Image

Reflection Image
Two-Photon Absorption (TPA)

σ one-photon cross section --> cm² molecule⁻¹

δ two-photon cross section --> cm⁴ s photon⁻¹ molecule⁻¹


Rumi et al., *JACS* 122, 9500, 2000
TPA Properties

- **3D confinement**
- **Depth penetration**

Two-photon excitation

\[
T_{\text{PA}} \propto \delta I^2
\]

\[
I \sim \frac{1}{z^2}
\]

\[\Rightarrow T_{\text{PA}} \sim \frac{1}{z^4}\]

Excited volume as small as \(\sim 0.05 \mu m^3\)
3D Metal Structures

Schematic Drawing

Two-Photon Microscopy

Wavelength: 730 nm
Pulse duration: 120 fs
Average Power: 15 mW
Writing Speed: 25 μm/s

Transmission Optical Microscopy Scanning Electron Microscopy

200 μm

65 μm

20 μm
**Solubility Issue**

**Solid interdigitated state**

**Solid de-interdigitated state**

**liquid state**

\[ \Delta H_{\text{de-int}} \]

\[ \Delta H_{\text{sol}} \]

---

**DSC - Differential Scanning Calorimetry**

---


## Ligand Length Effect

<table>
<thead>
<tr>
<th>Sample</th>
<th>ligand</th>
<th>$\Delta$H(kJ/mol organic)</th>
<th>Temp(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d = 5 nm</td>
<td>octadecanethiol</td>
<td>-42.3</td>
<td>402</td>
</tr>
<tr>
<td>d = 5 nm</td>
<td>dodecanethiol</td>
<td>-35.5</td>
<td>402</td>
</tr>
<tr>
<td>d = 5 nm</td>
<td>octanethiol</td>
<td>-20.7</td>
<td>401</td>
</tr>
</tbody>
</table>

**Result:**
The shorter the ligand the smaller the interdigitation enthalpy
## Nanoparticle Size Effect

<table>
<thead>
<tr>
<th>Sample</th>
<th>ligand</th>
<th>relative ligand amount</th>
<th>$\Delta H$ (kJ/mol org)</th>
<th>Temp (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d = 5$ nm</td>
<td>octanethiol</td>
<td>1</td>
<td>-20.7</td>
<td>401</td>
</tr>
<tr>
<td>$d = 7$ nm</td>
<td>3:1 oct/dod</td>
<td>1/3</td>
<td>-13.5</td>
<td>401</td>
</tr>
<tr>
<td>$d = 8$ nm</td>
<td>3:1 oct/dod</td>
<td>1/2</td>
<td>-5.7</td>
<td>377</td>
</tr>
</tbody>
</table>

**Result:**
The larger the nanoparticle the smaller the interdigitation enthalpy, probably because of surface curvature effect.
# Mixed Ligands Effect

<table>
<thead>
<tr>
<th>Sample</th>
<th>ligand</th>
<th>ΔH(kJ/mol org)</th>
<th>Temp(K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d = 7 nm</td>
<td>3:1 oct/dod</td>
<td>-5.7</td>
<td>377</td>
</tr>
<tr>
<td>d = 5 nm</td>
<td>1:3 carbazolethiol/oct</td>
<td>-6.0</td>
<td>384</td>
</tr>
<tr>
<td>d = 5 nm</td>
<td>1:1:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1:1 octadecane/dodecane</td>
<td>-9.5</td>
<td>380</td>
</tr>
<tr>
<td>d = 5 nm</td>
<td>3:1 hep/dod</td>
<td>-20.6</td>
<td>420</td>
</tr>
<tr>
<td>d = 5 nm</td>
<td>1:1 octadecane/dodecane</td>
<td>-9.5</td>
<td>380</td>
</tr>
</tbody>
</table>

**Result:**
Mixture of ligands lower the interdigitation enthalpy.
Order/Disorder Transition

@122°C

Deinterdigitated

@20°C

Interdigitated

10nm
Thermal Annealing Evidences

**SEM**

Pristine Film with a thickness of ~ 20nm

After 1 thermal cycle

**TEM**

Thick annealed film

Submonolayer

After 4 thermal cycles

After 5 thermal cycles
Figure 25. Direct syntheses of dendronized AuNPs containing a nonaferroceny1 thiol dendron (about 180 ferroceny1 groups). Reprinted with permission from ref 251 (Astruc’s group). Copyright 2003 American Chemical Society.
Fluorescent Nanoparticles

Nanoparticles synthesized by place exchange reactions

~ 10 dyes per nanoparticles

~ 60 dyes per nanoparticles
All Dye Coated Nanoparticles

~ 2500 dyes per nanoparticles

Fluorescence Quantum Yield ($\eta$) of the:
Free Dye 48% (2.2 ns)
Dye on the particle 33% (1.8 ns)
Optical Spectroscopy

One Photon Absorption

Fluorescence

Two Photon Absorption

• Two-Photon Cross Section per Nanoparticle $\delta$: $3 \times 10^5$ GM